Home  |  About Us  |  Link To Us  |  FAQ  |  Contact

# Number of Intersections Regular Polygon 1.0

Date Added: April 08, 2013  |  Visits: 216

NUMREGPOLY Number of Intersection Points and Regions Made By The Diagonals of a Regular Polygon [A,B,I,R]=numregpoly(N) for integer n returns the following: A: Vector of number of points inside the regular n-gon other than the center where exactly k lines meet B: Vector of number of k-tuples of diagonals which meet at a point inside the n-gon other than the center I: Scalar, Number of intersection points formed inside a regular n-gon by its diagonals R: Scalar, Number of regions that the diagonals cut the n-gon into [A,B,I,R]=numregpoly(V) for vector of integers n returns the same results, with each row being for the i'th entry in inputA and B turn into Matrices, and I and R into column vectors Reference:"The number of intersection points made by the diagonals of a regular polygon", B. Poonen, M. Rubinstein, SIAM J. Discrete Math. 11 (1998), no. 1, 133d-deOCt156. [MR 98k:52027]URL (.pdf): www-math.mit.edu/~poonen/papers/ngon.pdf

 Requirements: No special requirements Platforms: Matlab Keyword: Abir Dnumregpolyv,  Entry,  Formed,  I039th,  Integers,  Intersection,  Results,  Scalar,  Vector Users rating: 0/10