Home  |  About Us  |  Link To Us  |  FAQ  |  Contact

First-Order Degree Linear Differential Equations (Integration factor Ig=x^a*y^b) (Update: 23-06-07) 1.0

Date Added: August 31, 2013  |  Visits: 308

First-order-degree linear differential and non-homogeneous equation's solution possible the unknown integration multipler technique. Also, this simple technique's depend both sides of original homogeneous differential equation. The solution is slightly and more complicated if this integration into special form to be very complex. In this application's selected Ig=x^a.y^b integration multiplier technique for non-homogeneous form.[SYNTAX]DIfactor( [ f1(x,y) , f2(x,y)] , flag )f1(x,y) : Non-homogeneous differential equation's M(x,y) functionf2(x,y) : Non-homogeneous differential equation's N(x,y) functionflag : If flag=1 than solution be perceive application else small solutionGeneral differential equation's [M(x,y)]dx + [N(x,y)]dy = 0[EXAMPLE] [2*x^3*y^4 - 5*y]dx + [x^4*y^3 - 7*x]dy = 0M(x,y)= f1(x,y) = [2*x^3*y^4 - 5*y]N(x,y)= f2(x,y) = [x^4*y^3 - 7*x]Matlab sub function application DIfactor( [2*x^3*y^4 - 5*y , x^4*y^3 - 7*x] , 1) ;[ZIP ARCHIVE]Example1.pdf (Analytical solution)Example2.pdfExample3.pdfDIfactor.m (sub function Matlab)example.m (run sub function)example.html[REFERENCES][1] Differential equations,PhD.Frank Ayres, Schaum's outline series and McGraw-Hill Company ,1998[2] Mathematical handbook of formulas and tables,PhD. Murray R. Spiegel, PhD. John Liu, Second edition,McGraw-Hill book company,2001,ISBN:0-07-038203-4[3] Differansiyel denklemler, Yrd.Do?.Dr. A.Ne?e Dernek, Do?.Dr.Ahmet,Dernek, Marmara university,Deniz book publisher,Istanbul,1995

 Requirements: No special requirements Platforms: Matlab Keyword: Ayres,  Differential,  Equationsphdfrank,  Examplehtml,  Examplem,  Mcgrawhill,  Outline,  References,  Schaum,  Series Users rating: 0/10

USER REVIEWS
FIRST-ORDER DEGREE LINEAR DIFFERENTIAL EQUATIONS (INTEGRATION FACTOR IG=X^A*Y^B) (UPDATE: 23-06-07) RELATED